POSITIONS AND AREAS OF SUN SPOTS [Communicated by Capt. J. F. Hellweg, U.S. Navy, Superintendent U.S. Naval Observatory. Data furnished by the U.S. Naval Observatory in cooperation with Harvard and Mount Wilson Observatories. Difference in longitude is measured from the central meridian, positive west. North latitude is positive. Areas are corrected for foreshortening and are expressed in millionths of the sun's visible hemisphere. The total area for each day includes spots and groups] | Date | Eastern | Heli | ographic | Э | A | rea | Total
area | Observatory | | | |---------------------|--|---|--|--------------------------------------|------|----------------------------|----------------------------------|---|--|--| | | stand-
ard
time | Diff. in
longitude | Longi-
tude | Lati-
tude | Spot | Group | for
each
day | | | | | 1933 Jan. 1 | 11 12
11 18
11 18
10 51
11 43
11 50
 | No spots +4.0 +45.0 +73.0 0 No spots | 147. 4
148. 4
149. 7
149. 7
149. 5
151. 1 | +5.0
+5.0
+4.5
+4.5
+4.5 | | 16
29
42
48
69 | 18
29
42
48
69
69 | Do. U.S. Naval. Do. Do. Do. Mount Wilson Do. U.S. Naval. Do. Do. Do. Do. Do. Do. Do. Mount Wilson | | | | area for
January | | | | | |
 | 11 | | | | ## PROVISIONAL SUN-SPOT RELATIVE NUMBERS FOR JANUARY 1934 (Dependent alone on observations at Zurich and its station at Arosa) [Data furnished through the courtesy of Prof. W. Brunner, Eidgen. Sternwarte, Zurich, Switzerland] | January 1934 | Relative
numbers | January 1934 | Relative
numbers | January 1934 | Relative
numbers | |--------------|---------------------|----------------|---------------------|----------------|---------------------| | 1
2
3 | 0 | 11
12
13 | 0
Mc 8
11 | 21
22
23 | 0 | | 4 | 0 | 14 | 12 | 24 | 0 | | 5 | 0 | 15 | 13 | 25 | Ō | | 6 | 0 | 16 | | 26 | 0 | | 7 | 0 | 17 | 11 | 27 | 0 | | 8 | 0 | 18 | | 28 | 0 | | 9 | 0 | 19 | 0 | 29 | Ec 8 | | 10 | 0 | 20 | | 50 | 11 | | | | | | 31 | | Mean: 24 days=3.1. c =New formation of a center of activity; E, on the eastern part of the sun's disk; W, on the western part; M, in the central zone. ## AEROLOGICAL OBSERVATIONS [Aerological Division, L. T. Samuels, temporarily in charge] By L. T. SAMUELS Free-air temperatures for January, as shown in table 1, averaged above normal at all stations except Boston and Pensacola. Departures of considerable magnitude occurred at Omaha, and Pembina. Relative humidity departures for the month were of opposite sign to those for temperature except at Cleveland, Dallas, and Omaha, where the departures were positive for both of these elements. In most cases the resultant free-air wind directions for the month did not differ appreciably from the normals (table 2). Moderate excesses in the resultant velocities were general at the northern stations but elsewhere no consistent variations from the normals occurred. During January, the International month for 1934, 46 sounding balloons were released from the Omaha Airport Station. To date 33 of the meteorographs carried by these balloons have been returned. Table 1.—Free-air temperatures and relative humidities obtained by airplanes during January 1984 ## TEMPERATURE (° C.) | | | Mass. ¹ (6
ters) | | nd, Ohio ²
neters) | | Tex.3 (146
ters) | | Nebr.4 (300
ters) | Pembina
(243 n | , N.Dak. ³
neters) | | a, Fla.º (2
ters) | San Diego, Calif. (9 meters) | | |---|--|---|--|--|--|---|--|--|--|--|---------------------------------|-------------------------------|------------------------------|-------------------------------| | Altitude (meters) m.s.l. | Mean | Depar-
ture from
normal | Mean Depar-
ture from
normal | | Mean Departure from normal | | Mean Depar-
ture from
normal | | Mean Depar-
ture from normal | | Mean | Depar-
ture from
normal | Меал | Depar-
ture from
normal | | Surface | -6.1 (7)
-6.7 -4.1 -4.6 | | -1. 3
-1. 2
-2. 8
-3. 5 | (7)
(7)
+3. 4
+3. 1 | 5. 9
7. 9
8. 3
7. 1 | (7)
(7)
+2.6
+2.1 | -3.9
-2.1
.4 | (7)
(7)
+5. 0
+4. 6 | -15.9
-13.2
-8.8
-7.7 | (7)
(7)
+2.5
+3.1 | 10. 2
9. 6
8. 5 | -1.1
-1.3
-1.1 | 11. 6
14. 1
13. 5 | +2.0 | | 2,000
2,500
3,000
4,000
5,000 | -9.7
-11.8
-14.0
-18.5
-24.3 | -5. 3
-5. 6
-5. 3
-3. 5
-4. 1 | -4.9
-7.0
-8.9
-14.2
-20.8 | +2.7
+2.4
+2.8
+2.3
+2.6 | 5. 2
2. 6
2
-6. 2
-13. 4 | +1.8
+1.3
+0.9
+0.4
-0.7 | 5
-2.9
5.6
-11.7
-18.2 | +4.9
+4.7
+4.5
+3.7
+3.3 | -8.3
-10.3
-12.6
-18.0
-24.0 | +4.3
+4.3
+4.5
+4.9
+4.0 | 5, 3
-, 4
-6, 0
-11, 2 | -1.4
-2.7
-2.8
-2.8 | 8.8
3.2
-4.5 | +2.7
+1.9
+1.4 | | RELATIVE HUMIDITY (PERCENT) | | | | | | | | | | | | | | | | Surface | 76
77
77
76
76
76
73
71 | (7)
(7)
+10
+14
+17
+18
+19 | 77
75
74
69
67
67
64 | (7)
(7)
+9
+11
+14
+14
+10 | 87
78
71
62
55
49
45 | (7)
(7)
+10
+8
+6
+3
+3 | 84
82
72
67
62
62
61 | (7)
(7)
+6
+8
+5
+6
+5 | 84
77
68
63
59
55
53 | (7)
(7)
+2
+3
0
-3
-4 | 82
78
73
64 | 0
+2
+4
+7
+7 | 69
49
36
28 | +3
-10
-15
-12
6 | | 4,000
5,000 | 70
71 | +18
+23 | 58
57 | +3
-2 | 35
32 | $-3 \\ -4$ | 58
56 | +5
+2 | 52
50 | $\begin{vmatrix} -2 \\ -7 \end{vmatrix}$ | 51
53 | +9
+9 | 24 | _š | Table 2.—Free-air resultant winds (meters per second) based on pilot-balloon observations made near 7 a.m. (E.S.T.) during January 1934 [Wind from $N=360^{\circ}$, $E=90^{\circ}$, etc.] | Altitude (meters)
m.s.l. | que | (1,554 | Atla
G
(309 n | | Bism
N.I
(518 m | Dak | ville, | rowns-
le, Tex. Vt. Cheyenn
Wyo.
(1873 meters) (1,873 meters) | | yo.
873 | Chicago,
Ill.
(192 meters) | | Cleveland,
Ohio
(245 meters) | | Dallas,
Tex.
(154 meters) | | Havre,
Mont.
(762 meters) | | Jackson-
ville, Fla.
(14 meters) | | Key West,
Fla.
(11 meters) | | | | |-----------------------------|--|--|---|--|--|---|--|--|---|--|--|---|---|---|--|--|--|---|---|---|---|--|--|--| | | Direction | Velocity | Surface | 351
312
298
302
293 | 1. 2
3. 4
4. 3
5. 5
7. 7
8. 4 | 319
332
319
301
292
283
272
272 | 2. 1
4. 8
5. 7
7. 3
11. 1
11. 0
11. 0
12. 0 | 9
308
297
297
294
300
292 | 1. 9
8. 1
10. 7
11. 3
13. 9
11. 2 | 346
134
184
190
221
219
224
244 | 0. 4
3. 7
3. 3
3. 9
4. 1
7. 3
7. 0
7. 8 | 215
222
254
273
293
294
276 | 1. 9
4. 3
5. 8
9. 3
13. 9
17. 0
17. 0 | 296
311
314
299
329 | 8. 7
11. 1
11. 2
9. 6
5. 7 | 258
252
271
279
281
288
290 | 2. 4
6. 9
11. 2
12. 7
10. 2
10. 4
13. 6 | 234
242
263
272
284
284
285 | 3. 8
6. 8
12. 1
13. 0
17. 3
16. 5
16. 9 | 310
225
256
274
294
286
291
277 | 0. 6
2. 3
5. 5
6. 0
7. 6
8. 6
9. 9
10. 2 | 240
251
276
281
285
295
290 | 4. 0
9. 6
14. 3
12. 9
14. 0
14. 7
10. 8 | 330
353
250
260
261
261
261 | 1. 9
1. 5
3. 1
5. 2
7. 1
8. 1
9. 4 | 60
85
104
114
259
270
282
276 | 2. 6
5. 7
4. 1
1. 2
1. 2
2. 6
4. 4
6. 2 | | Altitude (meters)
m.s.l. | geles, | Los An-
geles, Calif. Oreg.
(217 meters) (410 meters) | | Memphis,
Tenn.
(83 meters) | | New Or-
leans, La.
(1 meter) | | Oakland,
Calif.
(8 meters) | | City, | homa
Okla.
neters) | Om
Ne
(306 n | br. | Pho
Ar
(338 n | | Salt Lake
City, Utah
(1,294
meters) | | Sault Ste.
Marie,
Mich.
(198 meters) | | Seattle,
Wash.
(14 meters) | | Washing-
ton, D.C.
(10 meters) | | | | | Direction | Velocity | Surface | 350
28
26
20
11
11
357
359
335 | 1. 0
1. 3
2. 3
3. 8
5. 3
5. 6
6. 2
7. 1
6. 9 | 0
187
213
161
246
269
314
315
314 | 0. 3
0. 2
1. 0
3. 0
3. 5
5. 7
8. 3
11. 7 | 0
145
236
263
274
277
289
290 | 0. 5
4. 7
5. 2
8. 6
10. 2
10. 2
10. 5 | 33
63
29
268
276
262
258 | 1. 2
1. 8
1. 6
5. 4
7. 3
9. 6
11. 3 | 83
34
22
5
350
350
346
330 | 1. 6
4. 4
6. 9
6. 2
7. 1
7. 0
6. 8
7. 0 | 274
254
271
283
292
293
292
287 | 1. 2
1. 9
4. 5
6. 1
7. 5
8. 0
9. 5
12. 1 | 306
276
283
289
280
277
281 | 1. 1
3. 2
7. 4
9. 5
10. 3
12. 8
13. 6 | 0
101
85
65
65
43
345
317
321
314 | 1. 8
2. 8
2. 2
1. 8
1. 1
1. 4
3. 3
5. 6
5. 2 | 162
176
214
296
298
323
324 | 1. 8
2. 5
1. 1
2. 9
5. 7
10. 0
10. 5 | 358
329
312
298
286 | 0. 6
7. 1
4. 9
6. 7
9. 9 | 0
175
197
202
203 | 2. 2
7. 6
6. 4
3. 9 | 292
272
276
290
287
295
286 | 1. 0
5. 2
8. 3
10. 1
10. 8
10. 2
9. 6 | ¹ Airplane observations made by Massachusetts Institute of Technology; departures based on normals obtained from 284 kite observations made at Blue Hill Meteorological Observatory (1896-1903). 3 Temperature departures based on normals determined by extrapolating latitudinally those of Royal Center, Ind., and Due West, S.C. Humidity departures based on normals of Royal Center, Ind. 3 Temperature departures based on normals determined by interpolating latitudinally those of Groesbeck, Tex., and Broken Arrow, Okla. Humidity departures based on normals of Groesbeck, Tex. 4 Temperature and humidity departures based on normals of Drexel, Nebr. 5 Temperature departures based on normals determined by extrapolating latitudinally those of Ellendale, N. Dak., and Drexel, Nebr. Humidity departures based on normals of Ellendale, N. Dak. 6 Naval air stations. 7 Surface and 500-meter level departures omitted because of difference in time of day between airplane observations and those of kites upon which the normals are based. Times of observations: Weather Bureau, 5 a.m.; Navy, 7 a.m.; and Massachusetts Institute of Technology, 8 a.m. (E.S.T.).